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The energy levels for the holes in the valence semi-conductors in a constant magnetic field are considered 
on the basis of Luttinger's theory. The corrections due to the anisotropy of the energy bands and to the 
nonzero momentum component along the magnetic field are computed by the second-order perturbation 
calculation and are found to be generally small. 

I. THE HAMILTONIAN MATRIX 

THE general form of the Hamiltonian for holes in 
the valence semiconductors in the presence of a 

constant magnetic field H has been given by Luttinger.1 

It is impossible to solve the Schrodinger equation for 
an arbitrary direction of the magnetic field. Confining 
the calculations to the case when the vector H lies in 
the (110) plane, one can make a transformation of the 
components of the momentum operator: 

kx= (l/^ifac-fa+fas), 

ky=(l/^)(k1c+k2+hs), 

kz— — fas-\-fac, 

where s=smO, c=cos0, and 6 is the angle between the 
vector H and the z axis. Making a corresponding 
transformation of the angular momentum matrices, 
the / ' s , we get the following form of the Hamiltonian: 

D=Do+D1+Ds+Di. (1) 

The Hamiltonian D, measured in units of ho) 
= h(eH/mc), is determined by the cyclotron resonance 
parameters 71, 72, and 73. Writing D in the form (1), 
we neglect the spin-orbit coupling, i.e., we take q—0. 
Do and D\ are given by formula (81) in the Luttinger 
paper.1 D$ and D± contain terms dependent on the 
component fa and vanish when fa=0. 

The explicit matrix representations of D3 and D* are 

£ 3 = 

Wi 

0 
wj 
0 

0 
Wz 

0 
w^ 

— W2 

0 
Wz 

0 

0 
W2 

0 
W\ 

(2) 

where 

and 

a>i=£A2(7i—2-/), 

W2=V6y"'ka, 

Wz=W(7l+2y'), 

y = i[(3c2-l)272+352(3c2+l)T3], 

7 , , , = IC(l+2c2-3c4)72+(l~2c
2+3C

4)73], 

k^(eH/hc)-Wfa, 

Z>4=^M 

h 

0 

h 
-h 
0 

0 
-h 

(3) 

1 J. M. Luttinger, Phys. Rev. 102, 1030 (1956). 

where 

tl= - (3/2yi2ksc(3c2-1) (at+a), 

/2=ift«^(3c8-l)+(l/v5)focC(3ca-5)at+(3ca-l)a], 

h=k2sc(3c2-l)-^k(l-4,c2+3cA)a^ 

and 
/ *=(Y3—72)/2. 

II. PERTURBATION CALCULATION 

The general solution of the equation 

has been given by Evtuhov.2 In his method, the wave 
function is developed into an infinite series of harmonic 
oscillator functions. Here, we present a simpler but 
less general method of solution of this problem by the 
second-order perturbation theory. 

Treating the anisotropy, proportional to ju, as a 
perturbation, we now compute the corrections to the 
energy levels (Roth, Lax, and Zwerdling3 and Good
man4). The unperturbed state of the system is described 
by the function ipqn(k) given by the solution of the 
equation 

(Oo+W f ln(*)=6 f ln(*)^(*) • (4) 

The function ^qn(k) has the form 

^qn(k) = 

bq^{k)un-2 
bqn

2(k)un 

bqr?(k)un-i 
bqn

4(k)un+1 

(5) 

for every value of n, if we take 

for n^—2, all &an(&) = 0; 

for w= — 1 , bq,-.i
1 = bq,-i

2=bq,J=0; 

for n=0, bqo
1 = bqo

3=0; 

for n—1, bqi
1=0; 

for w£2, allbqn(k)^0. 

After substitution (5) into (4), we get the following 
system of the homogeneous equations for the coeffi-

2 V. Evtuhov, Phys. Rev. 125, 1869 (1962). 
3 L. M. Roth, B. Lax, and S. Zwerdling, Phys. Rev. 114, 90 

(1959). 
4 R. R. Goodman, Phys. Rev. 122, 397 (1961). 
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cients bqn(k): 

C(Ti+T' ) («- f )+l«+^ 2 (Ti -2T ' ) -^«> a n 1 

- 1 > ( » - l)]1 W ~ [6(»- l)]"V"*6ff»»=0, 

- [ ^ ( W - D J ' V V ' + C C T I — / ) ( » + * ) - * « 
+^ 2 (7 i+27 ' ) -e a J* 8 n 2 +[6(w+l) ] 1 / V"^ a M

4 =0, 

- [ 6 ( W - l ) ] " V " ^ 9 „ i + [ ( 7 l - 7 ' ) ( M - § ) + i / c (6) 

+^ 2 (7 i+27 ' ) -e a J* 9 1 l
3 -C3«(«+l) ] 1 /V '^« 4 =0, 

[6(W+l)]1 '27'"^9 n
2-C3«(»+l)]1 'V'^K

3 

+ [(71+7')(»+f)-f 'C+P2(71-27 ,)-«3«>^4=0. 

Here 
7"=l[(3-2C

2+3c
4)72+(5+2c2-3c4)73]. 

The quantity n corresponds to the Landau magnetic 
quantum number; the quantity q numbers the solutions 
of the secular Eq. (7). 

From the normalization of the function fqn, we get 
the following condition for the coefficients bqn{k): 

(&5«
1)2+ ( V ) 2 + ( V ) 2 + (V4)2= 1 • 

The eigenvalues eqn are given by the solution of the 
secular equation (compare Wallis and Bowlden,6 

Suffczynski,6 Elliott, McLean, and Macfarlane7): 

(Yi+V) (» -§ )+!« 
+ P 2 ( 7 i - 2 7 ' ) - 6 , 
- [ 3 » ( » - l ) } V 

-I6(n-l)jl*ky"' 

0 

-£3n(n-l)Ji2y" - [ 6 ( » - l ) P V 

0 

0 

(7 i -7 ' ) (»+ i ) -4« 
+P2(7i+27')-«9» 

0 (71-7') (»-*) + *« 
+^ 2 (7 i+2 7 ' ) - « 8 » 

rjKw+l)]1 '2^'" -C3W(w+l)]1 '27" (71+7') (»+*)-*« 
+ ^ 2 ( 7 i - 2 7 ' ) - « 9 n 

^ ( w + l ) ] 1 ^ ' " 

- [Xw+l) ] 1 ' 2 ?" 
= 0. (7) 

The perturbation is described by the Hamiltonian 

which is proportional to /x. Corrections to the energy 
tqn{k) can be obtained from the standard formulas of 
the perturbation theory. The first order correction 
vanishes identically because B\ and D± have no diagonal 
matrix elements in the DQ+DZ representation. 

The second-order correction is 

\(n,q9k\Di+D*\tn,p,k)\* 
««.»(*)= E E • (8) 

m*n p eqn{k)—€pm(k) 

The summation over the intermediate states goes over 
all ladders and all values of n which combine with the 
level under consideration. 

The only nonvanishing matrix elements of the 
Hamiltonian parts D\ and D* are: 

(n,q,k\Di\n+4,p9 k) 

, w+4^gn4} j 

(», q, k\Di\n+3, p, k) 
= \yRvc (3c2- 5) {[n (n+1 )J»bp, ^bqJ 

-l(n+2)(n+3)Jl*bP,^bqn*}, 

(n, q, k\D1\n+2, p, k) 
= iv3M52(3C

2-l){i[3w(W-l)]1/2^,^2
1&3„1 

- 4 P (»+1) (»+2)]^ip. r*ibq* 

+i[3(W+2)(«+3)P26p , «i+246gn4 

— (n+%)bp,n+2lbqn
2— (»+|)&|,. «+28*«n4} , 

(n,q,k\Di\n+l,p,k) 
= |V3"MW(3C2- 1) {(2»- l)bp, ^bqn» 

-(2n+3)bp,^i*ban*+[n(n-l)J'tbp.M.i'Kn1 

-l(n+l)(n+2)Jl*bp,n+1*bqn*}, 

(«, g, &|Z>i|»— l,p, k) 
= iv3^c(3c2-1){[(»-1) ( » - 2)]1'26p. ^ V 3 

-[«(»-l)]1/2Jp,n_1
2&9K

4+(2w-3)6p,n_1
8J9„1 

-(2n+l)bJ,,n^bqJ}> 

{n,q,k\Di\n—2,p,k) 
= |v3"^2(3c2-l){i[3(«-2)(w-3)]1/%.M_2

163„1 

-*|>(»-l)]1 '*ip .»-* ,*«»2 

- | [ 3 ( n - 1 j ( » - 2)]1/2&P, «-23 V 
+|[3w(«+l)]1'2&3) 

— (» — f )6Pl n^bqn1— ( « — | ) 6 p , n-24^n2} , 

(w, <?, &|Z?i|w—3, ̂ , &) 

-[»(n-l)]1/26p,^846 f ln
2}, 

(», 2, &|Z>i|« —4, p, k) 
= y3n(3c*-l)(c2-3){Z(n-2)(n-3)Jl* 

(w, q,k\D4\n+3,p, k) 
^^y^ksc(3c'-5)l(n+l)^bp,^bqr? 

+ (n+2yi*bp,^bqrf], 

s R. F. Wallis and H. J. Bowlden, Phys. Rev. 118, 456 (1960). 
6 M. Suffczynski, Proc. Phys. Soc. (London) 77, 1042 (1961). 
7 R. J. Elliott, T. P. McLean, and G. G. Macfarlane, Proc. 

Phys. Soc. (London) 72, 553 (1958). 

file:///yRvc


A N I S T R O P Y C O R R E C T I O N S T O V A L E N C E B A N D 1931 

"~T~bp, „+2 Oqn ) 

(», q, k\Di\n+2, p, k) 

= V3 / i {pV(3c 2 — 1) (bp, n+2-Uqn 

-^*a-4c*+3c4)[»1's6p,^,16(In» 
- (n+2) 1 «6, .^A, .*]} : 

(m, <?, £|£>4|»+l,i>, £) 

- (3 (n+ 1))1/26P, n+i? V ~ (3»)1'2^, ^ V 

+ (3(n+2))1"6„.,H.i«69„
4-»1'2*»>. ,1/) 2 

- ( < * + l ) 1 / 2 W i 3 ^ 4 } , 

Op, n—1 Oqn J 

(«, q, k\Di\n — 1, />, &) 

= -v3^(3c 2 - l ){^ 2 [6 p , r i _i 3 &, n
1 

+ (l/v2)&[(3 ( » - 2))^bp, n^bqn
l 

- ($n)Wbp^bq*- (3(n-l)yi*bp,nJbqr? 

-(n~iyi2bp,n^bqn'-n^bp>n^bqr?}y 

(n,q,k\Dt\n—2,p,k) 

= ^MWs\W-l)(bp,n^bqn
l+bp,n„3qn^ 

- V 2 ^ ( l - 4 c 2 + 3 c 4 ) [ ( n - 2 ) ^ p , n _ 2
3 6 Q n

1 

-n^bp,n^bqn*~]}, 
(n, q, k\Di\n—3, p, k) 

^^yi2fiksc(3c2-S){(n-2)^bp,n^bqr} 

+ (n-iyi*bp,n^bqr?}. (9) 

The other matrix elements of D\ and D\ vanish 
because the eigenfunctions un of a harmonic oscillator 
are orthogonal for different w's. 

III. NUMERICAL RESULTS 

In order to estimate the corrections due to anisotropy 
in valence semiconductors, a numerical calculations 
has been made for germanium and silicon for the angle 
0 equal to 0°, 45°, 90°. In these calculations, the 
following values of constants 71, 72, 73, and K which 
appear in the above formulas are used: for germanium 
(Roth, Lax, and Zwerdling)3 

7 i = 1 3 . 1 , 72=4.15, 73=5.5 , /c=3.23, 

for silicon (Stickler, Zeiger, and Heller)8 

7 i=4 .22 , 72=0.50, 73=1.35, K = - 0 . 3 9 . 

The k dependence of the unperturbed energy levels 
is obtained from the solution of the Eq. (7). This 
dependence is nearly parabolic for the two light-hole 
ladders except of the lowest Landau numbers n for all 
considered directions of the magnetic field. More 
interesting is the k dependence of the heavy-hole 
levels. In one of the ladders, namely in the e{~ ladder, 
there appear minima for values of k different from zero. 
For 0=0° , the distance of these minima from the 
center of the Brillouin zone increases as the Landau 
number n increases, while for 0=45° and 0=90°, this 

FIG. 1. The cor
rected lowest levels 
in four ladders in Ge 
for the angle 0=0°. 
The full lines show 
corrected levels; the 
dashed lines show 
uncorrected levels. 

distance decreases with increasing n. Ths shape of 
these levels is similar to those obtained by Wallis and 
Bowlden5 and Evtuhov.2 

TABLE I. Cyclotron resonance mass ratios {mc/m) 
in Ge for the angle 0=0°. 

n 

- 1 
0 
1 
2 
3 
4 

61+ 

0.058 
0.047 
0.046 
0.045 
0.045 
0.045 

€ 2 + 

0.112 
0.057 
0.047 
0.046 
0.045 

€1 

0.200 
0.235 
0.248 

€2 

0.234 
0.248 
0.254 
0.258 

Both the curvature and the cyclotron resonance 
masses depend on the direction of the magnetic field 
even for unperturbed levels if we take different values 
for the parameters 72 and 73 in the Hamiltonian 
DQ+DZ. The cyclotron resonance masses of uncorrected 
levels, i.e., the reciprocals of the separation between n 
and n + 1 levels, at &=0, are given in Tables I -VI for 
different values of the angle 6. In both considered 

TABLE II. Cyclotron resonance mass ratios (mc/nt) 
in Ge for the angle 0 = 45°. 

J. J. Stickler, H. J. Zeiger, and G. S. Heller, Phys. Rev. 129, 
7 1 1077 (1962). 

n 

- 1 
0 
1 
2 
3 
4 

61+ 

0.054 
0.045 
0.044 
0.043 
0.043 
0.043 

6 2 + 

0.130 
0.054 
0.045 
0.044 
0.043 

ei 

0.256 
0.310 
0.329 

€2 

0.310 
0.330 
0.338 
0.343 
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TABLE III. Cyclotron resonance mass ratios (mc/m) 
in Ge for the angle 0=90°. 

n 

-1 
0 
1 
2 
3 
4 

€1+ 

0.055 
0.045 
0.044 
0.044 
0.043 
0.043 

€2+ 

0.126 
0.055 
0.045 
0.044 
0.044 

e i 

0.243 
0.291 
0.309 

€2 

0.291 
0.309 
0.317 
0.321 

semiconductors, the cyclotron resonance masses of the 
light holes change slightly for different directions of 
the magnetic field. The departure from the uniform 
spacing for low n's occurs in both Ge and Si but is 
smaller and decreases more rapidly as n increases in Ge 

TABLE IV. Cyclotron resonance mass ratios (mc/m) 
in Si for the angle 0=0°. 

n 

- 1 
0 
1 
2 
3 
4 

€1+ 

0.212 
0.193 
0.183 
0.178 
0.175 
0.174 

6 2 + 

0.269 
0.231 
0.204 
0.189 
0.181 

€l 

0.283 
0.318 
0.342 

€2 

0.335 
0.353 
0.365 
0.372 

than in Si. This is conceivable because the relative 
anisotropy (73—72)/(73+72) is larger in Si than in Ge. 
The values of mc/m are in accord with the experimental 
data quoted by Dresselhaus, Kip, and Kittel.9 The 

FIG. 2. The cor
rected lowest levels 
in four ladders in Si 
for the angle 0=0°. 
The full lines show 
corrected levels; the 
dashed lines show 
uncorrected levels. 

1 k 

9 G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368 
(1955). 

FIG. 3. The cor
rected lowest levels 
in four ladders in Ge 
for the angle 0=90°. 
The full lines show 
corrected levels; the 
dashed lines show 
uncorrected levels. 

cyclotron resonance masses of the heavy holes exhibit 
pronounced dependence on the direction of the magnetic 
field. The character of this dependence agrees with the 
experimental data but the magnitude of (mc/m) is 
smaller by a few percent than the values given in 
cyclotron resonance measurements.9 

TABLE V. Cyclotron resonance mass ratios (mc/m) 
in Si for the angle 0=45°. 

n 

- 1 
0 
1 
2 
3 
4 

€ ! + 

0.181 
0.166 
0.161 
0.158 
0.157 
0.156 

€ 2
+ 

0.342 
0.252 
0.193 
0.170 
0.162 

e i 

0.308 
0.390 
0.438 

€2 

0.450 
0.470 
0.481 
0.488 

The knowledge of the dependence eqn on k permits 
us to estimate the extent of validity of the perturbation 
calculation. The second-order perturbation calculation 
is limited by the condition that in the perturbation 
formula the numerators must be smaller than the 
energy denominators. An analysis of the relative 
position of the energy levels reveals that this condition 

TABLE VI. Cyclotron resonance mass ratios (mc/m) 
in Si for the angle 0 = 90°. 

n 

- 1 
0 
1 
2 
3 
4 

€1+ 

0.187 
0.171 
0.165 
0.162 
0.161 
0.160 

e2+ 

0.324 
0.248 
0.196 
0.175 
0.167 

e i 

0.298 
0.368 
0.411 

C2 

0.420 
0.439 
0.451 
0.457 
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FIG. 4. The cor
rected lowest levels 
in four ladders in Ge 
for the angle 0 = 45°. 
The full lines show 
corrected levels; the 
dashed lines show 
uncorrected levels. 

0.5 K 

is valid for small values of k, so small that they consti
tute a fraction (0.3-0.5) of a percent of the dimension 
of the Brillouin zone for magnetic fields as large as 
H= 100 kG. The reason for such a limitation is a strong 
mixing of the levels of different ladders, especially in Si. 
The second-order corrections were calculated for the 
lowest energy levels. From Eqs. (9) it can easily be 
seen that the influence of the anisotropy upon the 
shape of the energy levels will be stronger for inter
mediate directions between the [001] and [110] 
directions because then all the matrix elements of the 
perturbation are different from zero. In the case when 
the vector H is in the [001] or [110] direction, taking 
account of the anisotropy does not change the shape 
of the energy levels. In both Ge and Si, the anisotropy 
corrections due to Di+D* lower only the energy levels 
and slightly change their curvature. The corrected 
levels for these directions are plotted in Figs. 1-3. For 
the intermediate angle 0=45°, the corrections were 
appreciable for the lowest levels in €i+ and cf ladders 
(see Fig. 4). The large value of the matrix element 

TABLE VII. Corrected 
for the lowest energy 

« I + ( -D 

e2+(0) 

«T(1) 

cyclotron resonance mass ratios (mc/m) 
levels in Ge and Si for the angle 0 = 0°. 

Ge 

0.054 
0.119 
0.210 
0.320 

Si 

0.276 
0.295 
0.291 
0.341 

(—1, 1, k\Di+D±\2, 3, k) of the perturbation and the 
small separation between these levels are the cause for 
this modification. In Ge, the curvature of these levels 
varies not only in magnitude but also in sign, instead 
the spacing varies slightly. In Si, where the constant ju 
is smaller than in Ge, an analogous calculation gives a 
distinct change of magnitude of the curvature for 
these levels. 

The corrected cyclotron resonance masses are given 
in Table VII. They differ from the uncorrected by a 
few percent. The only pronounced change in the €i+ 

ladder in Si follows from the small separation between 
the €i,_i+ and e%c levels even for &=0, so small that 
in the perturbation formula the numerator is larger 
than the energy denominator, i.e., the above mentioned 
condition of validity of the perturbation theory is not 
valid. 

The latest measurements of the cyclotron resonance 
parameters 71, 72, 73 in Si (Hensel and Feher)10 give 
for fi a value by 40% larger than that used in the 
present calculations. Because the anisotropy corrections 
are proportional to M2, it can be expected that the 
corrections for Si will be greater than those calculated 
here. 

Practical implication which results from the present 
calculations is that the form of the ladders resulting 
from the matrix DQ+D% is entirely satisfactory for 
most applications. 
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